

High Energy X-ray Diffuse Scattering

Ray Osborn, Stephan Rosenkranz, Peter Chupas Branton Campbell, Dimitri Argyriou

Materials Science Division

Acknowledgements

Peter Lee, Sunil Sinha, Lida Vasiliu-Doloc, Jeff Lynn, David Keen, Lee Robertson, Thomas Proffen, Friedrich Frey

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Outline

- Introduction to Single Crystal Diffuse Scattering
 - Examples of Single Crystal Diffuse Scattering
 - Metallic Alloys, Molecular Solids, Vacancy Complexes
- Diffuse Scattering in CMR Transition Metal Oxides
 - Orbital Polarization (Huang Scattering)
 - Orbital Correlations (Longitudinal Jahn-Teller Modulations)
 - Correlated Polaronic Fluid
- Potential and Demands of High-Energy X-ray Diffuse Scattering
 - Efficient Measurement of Reciprocal Space Volumes
 - Data Analysis Techniques
 - Corrections for Thermal Diffuse Scattering
- Conclusions

Importance of Diffuse Scattering

Cross section of 50x50x50 u.c. model crystal consisting of 70% black atoms and 30% vacancies!

Properties might depend on vacancy ordering!!

Bragg Scattering

Diffuse Scattering

http://www.totalscattering.org/teaching

Diffuse Scattering Workshop

http://www.neutron.anl.gov/diffuse/">

Scientific Scope of Diffuse Scattering

- List of subjects identified at the Workshop on Single Crystal Diffuse Scattering at Pulsed Neutron Sources
 - Stripes in cuprate superconductors
 - Orbital correlations in transition metal oxides (including CMR)
 - Nanodomains in relaxor ferroelectrics
 - Defect correlations in fast-ion conductors
 - Geometrically frustrated systems
 - Critical fluctuations at quantum phase transitions
 - Orientational disorder in molecular crystals
 - Rigid unit modes in framework structures
 - Quasicrystals
 - Atomic and magnetic defects in metallic alloys
 - Molecular magnets
 - Defect correlations in doped semiconductors
 - Microporous and mesoporous compounds
 - Host-guest systems
 - Hydrogen-bearing materials
 - Soft matter protein configurational disorder using polarization analysis of spin-incoherence
 - Low-dimensional systems
 - Intercalates
 - Structural phase transitions in geological materials

Diffuse Scattering from Metallic Alloys

Short-range Order in Null Matrix ⁶²Ni_{0.52}Pt_{0.52} measured on the DCS TOF spectrometer

J. A. Rodriguez, S. C. Moss, J. L. Robertson, J.R.D. Copley, D. A. Neumann, J. Major, H. Reichert and H. Dosch

Diffuse Scattering from Molecular Solids

T. R. Welberry et al Acta. Cryst. A67, 101 (2001)

 $2\theta = 26^{\circ}-77^{\circ}$ Co $K\alpha$

Diffuse Scattering from Molecular Solids

T. R. Welberry et al J. Appl. Cryst. 36, 1400 (2003)

Diffuse Scattering from Vacancy Complexes

Diffuse Scattering from Transition Metal Oxides

Colossal Magnetoresistance

The largest CMR effects are observed in mixed-valence manganites.

e.g. La_{1-x}Ca_xMnO₃, La_{1-x}Sr_xMnO₃

The CMR is largest just above the ferromagnetic transition temperature

Millis, Littlewood and Shraiman [PRL 74, 5144 (1995)] showed that double exchange was not enough to explain CMR *i.e.* electrons are localized by local lattice distortions

Jahn-Teller Polarons

Jahn-Teller Distortions

Hopping e_g electrons coupled to the lattice via the Jahn-Teller distortion mechanism.

Ruddlesden-Popper Phases

$$n=\infty$$

 $SrO (La_{1-x}Sr_xMnO_3)_n$

Two-dimensional Magnetic Correlations

x=0.4 Bilayer Manganite

R. Osborn, S. Rosenkranz, D. N. Argyriou, L. Vasiliu–Doloc, J. W. Lynn, S. K. Sinha, J. F. Mitchell, K. E. Gray, and S. D. Bader Physical Review Letters **81**, 3964 (1998).

Intensity-variation across the rods in-plane spin correlations

Huang Scattering

11-ID-D, 30keV

Huang Scattering Theory

$$I(\mathbf{Q}) = \sum_{m,n} e^{i\mathbf{Q}\cdot(\mathbf{R}_m - \mathbf{R}_n)} f_m f_n e^{-W_m} e^{-W_n} \langle (\mathbf{Q} \cdot \mathbf{u}_m)(\mathbf{Q} \cdot \mathbf{u}_n) \rangle$$

$$I_{POL}(\mathbf{Q}) = N |F_{\mathbf{G}}|^2 \sum_{\alpha,\beta,\gamma,\delta} Q_{\beta} Q_{\delta} \left(\sum_{j,j'} \frac{\varepsilon_{\alpha,\mathbf{q},j} \, \varepsilon_{\beta,\mathbf{q},j}^* \, \varepsilon_{\gamma,\mathbf{q},j'}^* \, \varepsilon_{\delta,\mathbf{q},j'}}{\omega_{\mathbf{q},j}^2 \, \omega_{\mathbf{q},j'}^2} \right) \sum_{m,n} \mathfrak{T}_{m,\alpha} \mathfrak{T}_{n,\gamma} \, e^{i\mathbf{q} \cdot (\mathbf{R}_m - \mathbf{R}_n)}$$

$$I_{TDS}(\mathbf{Q}) = N |F_{\mathbf{G}}|^2 \left(\frac{kT}{2M}\right) \sum_{\beta,\delta} Q_{\beta} Q_{\delta} \left(\sum_{j} \frac{\varepsilon_{\beta,\mathbf{q},j}^* \varepsilon_{\delta,\mathbf{q},j}}{\omega_{\mathbf{q},j}^2}\right)$$

$$u_{m,\delta} = \int \frac{d^3q}{\left(\frac{2\pi}{a}\right)^3} \sum_{\beta} \left(\sum_{j} \frac{\varepsilon_{\beta,\mathbf{q},j}^* \varepsilon_{\delta,\mathbf{q},j}}{\omega_{\mathbf{q},j}^2} \right) \sum_{n} \mathfrak{I}_{n,\beta} e^{i\mathbf{q}\cdot(\mathbf{R}_m - \mathbf{R}_n)}$$

B. Campbell et al Phys. Rev. B. 67, 020409 (2003)

Static vs Thermal Diffuse Scattering

Inelastic Neutron Scattering

- Sudden increase in static diffuse scattering at T_C,
- Conventional thermal population of phonons.

X-ray Scattering

- Linear increase below T_C (thermal diffuse scattering)
- Sudden increase at T_C (static diffuse scattering)

Orbital Polarization - 300K

Temperature Dependence of Polarization

Orbital Polarization

$$\begin{pmatrix} u_{O1_{-}x} \\ u_{O2_{-}y} \\ u_{O3_{-}z} \end{pmatrix} = \begin{pmatrix} -0.012 \\ -0.012 \\ 0.074 \end{pmatrix} \mathring{A}$$

120 K

$$\begin{pmatrix} u_{O1_{-}x} \\ u_{O2_{-}y} \\ u_{O3_{-}z} \end{pmatrix} = \begin{pmatrix} 0.083 \\ -0.022 \\ -0.023 \end{pmatrix} \mathring{A}$$

Evidence of Polaron Correlations

Bruker CCD x-ray data: 115 keV 11-ID-C

L. Vasiliu-Doloc et al (PRL 1999) Shimomura et al (PRL 1999) Adams et al (PRL 2000), Dai et al (PRL 2000) Kiriyukin et al (PRB 2002)

Models of Polaron Correlations

x-ray SCD data (36 keV 1-ID-C)

$$I(hklm) \propto |F|^2 = \left| \pi(\mathbf{G} + m\mathbf{q}) \cdot \sum_{n} \mathbf{u}_{n} f_{n} e^{i\mathbf{G} \cdot \mathbf{r}_{n}} \right|^2$$

$$\mathbf{G} = (hkl) \qquad \mathbf{u}_n = \mathbf{u}_n^c + i\mathbf{u}_n^s$$

$$\Delta \mathbf{r}_n = \mathbf{u}_n^s \sin(\mathbf{q} \cdot \mathbf{r}_n) + \mathbf{u}_n^c \cos(\mathbf{q} \cdot \mathbf{r}_n)$$

•
$$\mathbf{q} = (0.3\ 0\ \pm 1) \text{ or } (0.3\ 0\ 0)$$

Longitudinal Jahn-Teller Modulations

B. J. Campbell, R. Osborn, D. N. Argyriou, L. Vasiliu-Doloc, J. F. Mitchell, S. K. Sinha, U. Ruett, C. D. Ling, Z. Islam, and J. W. Lynn, Physical Review B **65**, 014427 (2001).

Correlated Polaronic Fluid

Unanswered Questions

- What is the origin of the orbital stripes and why are they not seen in the perovskites?
- How does ferromagnetism coexist with polaron correlations and why is the exchange enhancement so small?

$$q \approx (0.3, 0, 0)$$

$$\xi_x \approx 6 \ a \approx 23 \ \text{Å}$$

$$\xi_v \approx 4 \ a \approx 15 \ \text{Å}$$

$$\xi_z \approx c/2 \approx 10 \text{ Å}$$

Speculations

- Stripe formation could be driven by
 - 1. Competition of Coulomb and strain interactions
 - 2. CDW-like instability of a pseudogapped metal

N.B. Importance of reduced dimensionality

Potential of High-Energy Diffuse X-rays

Reasons for using high-energy X-ray diffuse scattering

- Need for very wide dynamic range of intensities and Q:
 - Diffuse scattering is several orders of magnitude weaker than Bragg scattering. significantly weaker compared to Bragg reflections.
 - It is spread over very large volumes of reciprocal space so we must minimize corrections for absorption, background, & Compton scattering.

Technical Demands

- Detector technology
 - background vs detector saturation vs read-out times
 - Single Detector (4h) → Image Plate (2m) → CCD (4s) → GE (0.03s)
- Data analysis on large volumes of data
- Thermal Diffuse Scattering co-existing with static diffuse scattering.

Ultimate Goal

- to collect complete *quantitative* volumes of reciprocal space efficiently.
 - tp allow modelling of complex disorder
 - to allow parametric studies of defects and their correlations.

Efficiency of Area Detectors

Mar 165 CCD ~ 1-ID-C

M. A. Estermann, W. Steurer, *Phase Transitions* **67**, 165 (1998) M. A. Estermann, *et al*, Z. Krist. **215**, 584 (2000)

Superlattice Reflections in a Layered Cobaltite

Diffuse Scattering Data Analysis

- Diffuse scattering from single crystals requires sophisticated analysis strategies to cope with large data sets
 - A full rotation volume with equivalent in-plane resolution ~ 7.2GB
- This is equivalent to
 - Rietveld analysis 30 years ago
 - Inelastic scattering now
- Future developments in instrumentation and data analysis will make data treatment much easier, providing for an expansion of the user community.
- X-ray diffuse scattering is complementary to neutron diffuse scattering in many systems. Analysis tools should be developed in coordination with neutron sources.

Reverse vs Automatic Monte Carlo

Reverse Monte Carlo

Automatic Monte Carlo

Disorder in $Fe_3(CO)_{12}$ - Automatic Monte Carlo

Welberry, Proffen and Bown, Acta Cryst A54, 661 (1998)

Thermal Diffuse Scattering

VOLUME 83, NUMBER 16

PHYSICAL REVIEW LETTERS

18 OCTOBER 1999

Determination of Phonon Dispersions from X-Ray Transmission Scattering: The Example of Silicon

M. Holt, 1,2 Z. Wu, 1,3 Hawoong Hong, 1 P. Zschack, 1 P. Jemian, 1 J. Tischler, 4 Haydn Chen, 1,3 and T.-C. Chiang 12.*
1 Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 South Goodwin Avenue, Urbana, Illinois 61801-2902

²Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080
³Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, Illinois 61801-2980

Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6033 (Received 6 May 1999)

Diffuse Neutron Scattering Poposaliat SNS

TOF Laue Diffractometer

i

"combine white beam and fixed k_i "

- 1. TOF Laue Diffractometer
 - highly efficient data collection
 - wide dynamic range in Q
- 2. Statistical Chopper
 - elastic energy discrimination
 - optimum use of white beam

$$C(j,k) = \sum_{i=i_{\min}}^{i_{\min}+N} A(i-k)S(i,j-i) + B(j)$$

$$S(i,j) = \frac{2}{N+1} \sum_{k=1}^{N} A(i-k)C(i+j,k) - \frac{2}{N+1}B(i+j)$$

Time-of-Flight

Conclusions

- Single crystal diffuse scattering provides vital information on complex disorder, and can make important contributions to a large number of scientific fields.
- Advances in instrumentation and analysis tools will open the technique up to a much larger range of scientific community.
 - Detector technology must cope with a very wide dynamic range
 - Computational analysis must cope with huge volumes of data
- High-Energy X-rays are a vital part of this development because
 - large volumes of reciprocal space can be measured efficiently.
 - absorption and background corrections are minimized.
- This should be pursued in parallel with complementary developments in neutron instrumentation.

